
Integrating COBOL with Java

Session S09
GSE Oslo

Tom Ross
May 30, 2006

May 30, 2006 Integrating COBOL with Java 2

Overview
• COBOL:Java interoperation

– OO COBOL syntax
• Uses other features of Enterprise COBOL

– Unicode
– Multi-threading

• New: J2C connector tool
– Java data mapping for COBOL group

May 30, 2006 Integrating COBOL with Java 3

COBOL:Java Interoperation
• Object-oriented COBOL syntax

– enable COBOL and Java interoperation within an address space
• COBOL invocation of Java
• COBOL class defines methods that can be invoked from Java

• Implementation based on the Java Native Interface (JNI)
– COBOL INVOKE statement maps onto Java JNI calls
– COBOL class methods definitions define Java native methods

• Documentation and assistance in mapping Java data types to/from
COBOL

• Support for JNI programming in COBOL
– COBOL COPY file analogous to jni.h,

enables access to JNI callable services
• Prerequisite: IBM Java 2 Technology Edition SDK 1.3 or 1.4

May 30, 2006 Integrating COBOL with Java 4

COBOL:Java Interoperation
• You can now use the Java interoperability extensions to access

Enterprise Java Beans (EJB) that run on a J2EE-compliant EJB
server
– WebSphere Application Server (WAS) is J2EE-compliant

• Client COBOL would access the following programming interfaces
using INVOKE:
– Java Naming and Directory Interface (JNDI) to locate
– EJB services and components
– Java ORB to invoke methods on enterprise beans

• WAS requires several of the COBOL V3 features:
– Java-based OO and therefore
– Unicode plus
– Multithreading

May 30, 2006 Integrating COBOL with Java 5

COBOL:Java interoperation - environments
• z/OS Unix

– Including WAS
• z/OS Batch
• IMS Java dependent regions

– JMP - Java Message Processing region
– JBP - Java Batch Processing region

• Windows (Windows COBOL component of WebSphere Developer for z/Series)

• AIX (IBM COBOL for AIX)

Note:
• COBOL object-oriented syntax for Java interoperation is not

supported under CICS
• Under CICS, Java and COBOL can interoperate (at the LINK level)

using JCICS commands

May 30, 2006 Integrating COBOL with Java 6

Client-side syntax
Declare referenced class and full external class name

Configuration section.
Repository paragraph.
Class Employee is 'com.acme.Employee'.

Declare object reference
01 anEmployee usage object reference Employee.

Create instance object
Invoke Employee New using by value id
returning anEmployee

Invoke instance method
Invoke anEmployee 'payRaise'
using by value amount

Invoke static method
Invoke Employee 'getNbrEmployees'
returning totalEmployees

May 30, 2006 Integrating COBOL with Java 7

COBOL native method - syntax
Identification Division.
Class-id. Manager inherits Employee.
Environment Division.
Configuration section.
Repository.
Class Manager is 'com.acme.Manager'
Class Employee is 'com.acme.Employee'.
Identification division.
Object.
Procedure Division.
Identification Division.
Method-id. 'Hire'.
Data Division.
Linkage section.
01 anEmployee usage object reference Employee.
Procedure Division using anEmployee.

…
End method 'Hire'.

End Object.
End class Manager.

May 30, 2006 Integrating COBOL with Java 8

COBOL classes
• OBJECT paragraph defines object instance methods
• FACTORY paragraph defines static methods
• COBOL classes can inherit from COBOL or Java classes
• Java classes can inherit from COBOL classes
• Methods can override inherited methods
• Methods can be overloaded
• Method names can be formed using Unicode characters
• Method parameters must be COBOL data types that map to Java

data types
• Method parameters must be passed BY VALUE
• Methods can CALL procedural COBOL programs or INVOKE other

methods (COBOL or Java)

May 30, 2006 Integrating COBOL with Java 9

COBOL methods can be overloaded
Identification Division.
Class-id. Account inherits Base.

…
Identification Division.
Method-id. 'credit'.
Data Division.
Linkage section.
01 amount pic S9(9) binary.
Procedure Division using amount.

…
End method 'credit'
Identification Division.
Method-id. 'credit'.
Data Division.
Linkage section.
01 amount comp-2.
Procedure Division using amount.

…
End method 'credit'.

End Object.
End class Account.

Same method name

Different parameter datatypes

May 30, 2006 Integrating COBOL with Java 10

Access to JNI services from COBOL
• Function pointers for JNI services are in the JNI Environment Structure
Access JNI Environment pointer
• New special register JNIEnvPtr
Access JNI Environment Structure and JNI callable services

Linkage section.
COPY 'JNI.cpy'
Procedure division.
Set address of JNIEnv to JNIEnvPtr
Set address of JNINativeInterface to JNIEnv

Check if an exception has been thrown by a Java routine
Invoke aJavaObject 'someJavaMethod'
Call ExceptionOccurred this is a JNI function pointer
using by value JNIEnvPtr
returning exceptionObject

If exceptionObject not = null
Display 'Caught an unexpected exception'
Call ExceptionClear using by value JNIEnvPtr
Invoke exceptionObject 'PrintStackTrace'
Goback

End-if

May 30, 2006 Integrating COBOL with Java 11

JNI services for string data
Unicode-oriented JNI services for Strings, part of the standard SDK:

NewString GetStringChars
GetStringLength ReleaseStringChars

• Convert between Java String objects and COBOL Unicode data
(PIC N(n) USAGE NATIONAL)

• Access these services with CALL function-pointer statements
– function pointers in the JNI Environment Structure

EBCDIC-oriented services, provided by IBM Java 2 SDK for z/OS:
NewStringPlatform GetStringPlatformLength GetStringPlatform

• Convert between Java String and COBOL alphanumeric data
(PIC X(n) USAGE DISPLAY)

• Access CALL 'literal' statements
– these services are DLLs

May 30, 2006 Integrating COBOL with Java 12

Interoperable data types for method parameters

Usage object reference class-nameclass types (object references)
including strings and arrays

Pic N usage national char

Usage comp-2 double

Usage comp-1 float

Pic S9(18) usage binary or comp-5 long

Pic S9(9) usage binary or comp-5 int

Pic S9(4) usage binary or comp-5 short

Pic X or Pic A byte

01 B pic X.
88 B-false value X'00'.
88 B-true value X'01' through X'FF'.

boolean

COBOLJava

May 30, 2006 Integrating COBOL with Java 13

Accessing existing procedural COBOL code from Java

• Write an OO COBOL wrapper class for the existing procedural
COBOL program

• Define a Factory method containing a CALL to the COBOL program
• Java client uses a static method invocation to invoke the wrapper,

e.g.
rc=Wrapper.callCob1(arg1,arg2);

rc=Wrapper.callCob1(arg1,arg2);

Factory.
Identification division.
Method-id. 'CallCob1'.

Procedure division using by value arg1,arg2.
Call 'Cob1' using arg1, arg2

Identification division.
Program-id. 'Cob1'.

A.java Wrapper.cbl Cob1.cbl

May 30, 2006 Integrating COBOL with Java 14

Compile and link of COBOL class definition

• Compile of COBOL class definition generates two outputs:
– COBOL object program implementing native method(s)
– Java class source that declares the native methods and

manages DLL loading
• COBOL object program is linked to form DLL: libclassname.so
• Java class is compiled (with javac) to form classname.class

May 30, 2006 Integrating COBOL with Java 15

linkedit

Manager.cbl

Identification division.
Class-id. Manager inherits Employee.
 …
End class Manager.

Manager.java

cob2

Manager.o
 public class Manager

extends Employee {
public native void Hire(…);
static {
 System.load Library(…);}
}

javacManager.class libManager.so

May 30, 2006 Integrating COBOL with Java 16

Getting started with COBOL and Java interoperability
• Ensure you have the Java 2 Technology Edition SDK installed

– SDK 1.4,
– SDK 1.3.1 (minimum level for under IMS), or
– SDK 1.3.0

• Ensure that the optional HFS components of Enterprise COBOL V3
have been installed

• Ensure that z/OS Unicode Conversion Services are configured for
COBOL use.

• See the sample OO application and makefile shipped with COBOL
in /usr/lpp/cobol/demo/oosample. Try compiling and running this
application.

May 30, 2006 Integrating COBOL with Java 17

New: using z/OS Java 2 Technology Edition V1.4

• z/OS Java 2 SDK 1.4 is based on the Language Environment
XPLINK linkage convention
– must run in an XPLINK environment

• COBOL uses standard LE linkage, but will run in an XPLINK
environment

• LE supports XPLINK:non-XPLINK transition at DLL boundaries
• Applications that will use XPLINK at any point must be initialized in

XPLINK mode

May 30, 2006 Integrating COBOL with Java 18

Using z/OS Java 2 Technology Edition V1.4

• Building COBOL:Java applications with V1.4 is unchanged
• Running COBOL:Java applications is unchanged if

– application starts with Java or the main method of a COBOL
class, and

– the application is run using the java command
In these cases, the XPLINK environment is automatically started by

the java command.
• If COBOL:Java application starts with COBOL,

the LE runtime option XPLINK(ON) must be used
– this explicitly initializes the XPLINK environment

• For z/OS UNIX shell
– Set _CEE_RUNOPTS="XPLINK(ON)"
– Set selectively, do not use as default for entire shell session

May 30, 2006 Integrating COBOL with Java 19

Java data binding tool
• New tool in Rational Application Developer V6

– also in products containing RAD V6
• WebSphere Developer for z/Series,
• Rational Software Architect, WebSphere Integration Developer, …

• Creates a Java class wrapper for a COBOL group
• COBOL group can contain general COBOL data types:

– packed or zoned decimal, currency values
– alphanumeric types, edited types, etc.

• Use Java wrapper objects to pass general COBOL data between
Java and COBOL

– apps no longer limited to the elementary interoperable data types

Note elementary types must be passed BY VALUE,
can not be updated by the receiving code

– wrapper object reference data items are passed BY VALUE
– but the objects themselves can be updated by the receiving code

May 30, 2006 Integrating COBOL with Java 20

COBOL Importer
• A component of the Java data binding tool

– provided by the IBM COBOL development group

• Based on the IBM COBOL compiler front-end
• Accurately generates metadata information about

COBOL data structures to the Java data binding tool
– Understands and supports all COBOL syntax
– Stays in sync with the COBOL language as new releases of IBM

COBOL are delivered
– Currently based on Enterprise COBOL V3R3 syntax level
– Enterprise COBOL V3R4 syntax will be supported as soon as

V3R4 syntax is shipped in IBM Windows COBOL

May 30, 2006 Integrating COBOL with Java 21

Enabling the Java data binding tool
• A component of the connector building (J2C) tools
• For information, search help for “J2C”

– see the entry “Creating J2C Applications”
• To install and enable the tool:

– Install the J2EE Connector Tools
(with the Rational Product Updater)

– Switch to J2EE perspective
– If you don’t see the J2C wizard under File > New > Other

then you need to Enable J2C Capabilities:
• Window > Preferences
• Expand “Workbench”, Click Capabilities
• Expand “Enterprise Java”
• Select Enterprise Java check box.
• Click Apply, OK

May 30, 2006 Integrating COBOL with Java 22

Sample application: Java to COBOL
Stock trade demo application

StockSale s = new StockSale();

TradeWrap.callTrade(s);

Factory.
Identification division.
Method-id. “callTrade”.

Procedure division
using by value StockSaleObj.

…
Call “Trade” using Stock-sale

Identification division.
Program-id. “Trade”

Procedure division
using Stock-sale.

TradeClient.java TradeWrap.cbl Trade.cbl

StockSale
Java object

Stock-sale
COBOL group

May 30, 2006 Integrating COBOL with Java 23

Sample application : Java to COBOL
Stock trade demo application
• StockSale.cpy - COBOL input group data structure
• StockSale.java - wrapper class generated with J2C Connector Tools
• TradeClient.java - standard Java

– Creates and initializes parameter: a StockSale object instance
– Drives COBOL trade application via wrapper class
– Receives back StockSale as updated by COBOL Trade app

• TradeWrap.cbl - OO COBOL wrapper class for Trade.cbl
– Makes Trade.cbl accessible to Java
– Input parameter: object instance of StockSale.java
– Outbound parameter: Stock-sale group data structure
– Bridges from Java data types to COBOL data types
– Bridges from Java by-value parameters to COBOL by reference

parameters
• Trade.cbl – standard procedural COBOL

– Processes stock trade
– Input/Output parameter: StockSale group data structure

May 30, 2006 Integrating COBOL with Java 24

Trade.cbl
cbl lib,thread,dll,pgmname(longmixed)
Identification division.
Program-id. "Trade" recursive.
Environment division.
Data division.
Working-storage section.
1 Commission pic 9(3)V99 value 39.95.
1 printNumberShares pic z(8)9.
1 printSharePrice pic $,$$$,$$$.99.
Linkage section.
Copy "StockSale.cpy".
Procedure division using Stock-sale.

Move inNumberShares to printNumberShares
Move inSharePrice to printSharePrice
Display ">>> COBOL Trade entered. Sell " printNumberShares

"shares of " inStockSymbol " at " printSharePrice
Move Commission to outCommission
Compute outTotal = inNumberShares * inSharePrice - Commission
Goback.

End program "Trade".

May 30, 2006 Integrating COBOL with Java 25

StockSale.cpy
1 Stock-sale.

2 inStockSymbol pic X(4).
2 inNumberShares pic 9(9) binary.
2 inSharePrice pic 9(6)V99 packed-decimal.
2 inSaleType pic X.

88 LimitOrder value "L".
88 MarketOrder value "M".

2 outCommission pic $$$9.99.
2 outTotal pic $,$$$,$$9.99.

May 30, 2006 Integrating COBOL with Java 26

StockSale.java wrapper class
Generated from Stock-sale.cpy with Java data binding tool.
Contains:
• Java byte array object containing actual COBOL data structure

contents
• getXXX(), setXXX() methods for each COBOL data item XXX, e.g.

public void setInStockSymbol(String inStockSymbol)
public BigDecimal getInSharePrice()

– used by Java client to access the COBOL data
• getBytes() method

– retrieve Java byte array containing COBOL data structure
contents

• setBytes() method
– set the Java byte array to COBOL data structure contents

May 30, 2006 Integrating COBOL with Java 27

Create StockSale java wrapper class from Stock-sale.cpy
In Rational Application Developer
• Start the Java data binding wizard: File > New > Other > J2C
• Select “CICS/IMS Java Data Binding”
• Choose mapping: “COBOL to Java”
• Browse for COBOL copy book in file system, select: StockSale.cpy
• In the Importer panel,

– Set Platform: z/OS
– Set Code page: as appropriate, e.g. IBM-1142 for Denmark/Norway
– Click “Query” and select Data Structure: Stock-sale
– Next

• In the Saving Properties panel,
– Set Generation Style: Default
– Project Name: Trade, use “New” to create new Java project
– Package Name: trade

• Click Finish

May 30, 2006 Integrating COBOL with Java 28

Start Java data binding wizard …

May 30, 2006 Integrating COBOL with Java 29

Start COBOL importer …

May 30, 2006 Integrating COBOL with Java 30

COBOL Importer …

May 30, 2006 Integrating COBOL with Java 31

Saving properties …

May 30, 2006 Integrating COBOL with Java 32

Generated StockSale.java wrapper class

May 30, 2006 Integrating COBOL with Java 33

TradeWrap.cbl
cbl lib,thread,dll,pgmname(longmixed)
Identification Division.
Class-id. TradeWrap inherits Base.
Environment Division.
Configuration section.
Repository.

Class Base is "java.lang.Object"
Class jbyteArray is "jbyteArray"
Class StockSale is "trade.StockSale"
Class TradeWrap is "trade.TradeWrap".

Identification Division.
Factory.
Procedure division.
Identification Division.
Method-id. "callTrade".
Data division.
Local-storage section.
01 StockSalePtr pointer.
01 StockSaleByteArray object reference jbyteArray.
Linkage section.
01 StockSaleObj object reference StockSale.

Copy "StockSale.cpy".
Copy "JNI.cpy".

Procedure division using by value StockSaleObj.
Display ">>> OO COBOL TradeWrap.callTrade entered"
set address of JNIEnv to JNIEnvPtr
set address of JNINativeInterface to JNIEnv
Invoke StockSaleObj "getBytes" returning StockSaleByteArray
Call GetByteArrayElements using by value JNIEnvPtr StockSaleByteArray 0
returning StockSalePtr

Set address of Stock-sale to StockSalePtr
Call "Trade" using Stock-sale
Call ReleaseByteArrayElements using by value JNIEnvPtr StockSaleByteArray StockSalePtr 0.

End method "callTrade".
End Factory.
End class TradeWrap.

May 30, 2006 Integrating COBOL with Java 34

TradeWrap.cbl - callTrade method
Method-id. "callTrade".

Data division.
Local-storage section.
01 StockSalePtr pointer.
01 StockSaleByteArray object reference jbyteArray.
Linkage section.
01 StockSaleObj object reference StockSale.

Copy "StockSale.cpy".
Copy "JNI.cpy".

Procedure division using by value StockSaleObj.
Display ">>> OO COBOL TradeWrap.callTrade entered"
set address of JNIEnv to JNIEnvPtr
set address of JNINativeInterface to JNIEnv
Invoke StockSaleObj "getBytes" returning StockSaleByteArray
Call GetByteArrayElements

using by value JNIEnvPtr StockSaleByteArray 0
returning StockSalePtr

Set address of Stock-sale to StockSalePtr
Call "Trade" using Stock-sale
Call ReleaseByteArrayElements

using by value JNIEnvPtr StockSaleByteArray StockSalePtr 0.
End method "callTrade".

May 30, 2006 Integrating COBOL with Java 35

TradeClient.java
import trade.*;
import java.math.*;
class TradeClient {

public static void main(String[] args) {
System.out.println(">>> Java TradeClient entered.");
StockSale s = new StockSale();
s.setInStockSymbol("IBM");
s.setInNumberShares(200);
s.setInSharePrice(new BigDecimal("83.09"));
s.setInSaleType("L");

TradeWrap.callTrade(s);

System.out.println(">>> Trade completed, Commission: "
+ s.getOutCommission()
+ " Total proceeds: "
+ s.getOutTotal());

}
}

May 30, 2006 Integrating COBOL with Java 36

Makefile to build the application on z/OS Unix
CLASSP=marshall.jar:$(JAVA_HOME)/standard/jca/connector.jar:trade.jar:.

all: trade/libTrade.so trade/libtrade_TradeWrap.so trade/TradeWrap.class TradeClient.class
Trade.o: trade/Trade.cbl

cob2 -c -bdll -I./trade ./trade/Trade.cbl
trade/libTrade.so: Trade.o

cob2 -o ./trade/libTrade.so -bdll,map,list,xref,compat=pm3 Trade.o >Trade.blst
TradeWrap.o: trade/TradeWrap.cbl

cob2 -c -bdll -I$(COBOLCOPYPATH):./trade ./trade/TradeWrap.cbl
mv TradeWrap.java trade

trade/libtrade_TradeWrap.so: TradeWrap.o libTrade.x
cob2 -o ./trade/libtrade_TradeWrap.so -bdll,map,list,xref,compat=pm3 TradeWrap.o \
libTrade.x $(JAVASIDEDECKPATH)/libjvm.x $(COBOLSIDEDECKPATH)/igzcjava.x \
>TradeWrap.blst

trade/TradeWrap.class: trade/TradeWrap.java
javac -classpath $(CLASSP) trade/TradeWrap.java

TradeClient.class: TradeClient.java
javac -classpath $(CLASSP) TradeClient.java

clean:
rm trade/TradeWrap.java trade/*.so *.o *.class trade/*.class *.lst *.blst *.log *.x \
2>/dev/null

May 30, 2006 Integrating COBOL with Java 37

Application build on z/OS Unix
• Export the Trade project to a jar file in the Windows file system
• Upload the jar file to an HFS directory in z/OS Unix, together with

the Java client
• Also upload marshall.jar from the WebSphere V6.0 runtime in RAD,

if not already available on z/OS from z/OS WebSphere
• z/OS Java V1 R4 contains the required JCA connector frameworks
• Source files for Trade.cbl and TradeWrap.cbl must be in a

subdirectory trade, since the application is in a package trade
• Use make command to run the makefile

May 30, 2006 Integrating COBOL with Java 38

Application execution on z/OS Unix
Sample command file run
export LIBPATH=$LIBPATH:./trade
CMD="java \
-cp trade.jar:marshall.jar:$JAVA_HOME/standard/jca/connector.jar:./trade:. \
TradeClient"
echo $CMD
$CMD

Application output:
run
java -cp trade.jar:marshall.jar:/usr/lpp/java/J1.4/standard/jca/connector.jar:./trade:.

TradeClient
>>> Java TradeClient entered.
>>> OO COBOL TradeWrap.callTrade entered
>>> COBOL Trade entered. Sell 200 shares of IBM at $83.09
>>> Trade completed, Commission: $39.95 Total proceeds: $16,578.05

May 30, 2006 Integrating COBOL with Java 39

Enterprise COBOL prerequisites
• z/OS 1.4 or later
• z/Architecture processor with extended-translation

facility 2 (for Unicode support)
• Java 2 Technology Edition SDK 1.3.x or 1.4

(for COBOL:Java interoperability support)
• Language Environment:

PTFs for APAR PQ95214
• Enterprise COBOL V3R4 compiler:

PTF for APAR PK07977
• DB2 coprocessor:

PTF for APAR PQ93857

